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ABSTRACT

Context. Hydrogen-rich, DA-type white dwarfs are particularly suited as primary standard stars for flux calibration. State-of-the-art
NLTE models consider opacities of species up to trans-iron elements and provide reliable synthetic stellar-atmosphere spectra to
compare with observations.

Aims. We will establish a database of theoretical spectra of stellar flux standards that are easily accessible via a web interface.
Methods. In the framework of the Virtual Observatory, the German Astrophysical Virtual Observatory developed the registered ser-
vice TheoSSA. It provides easy access to stellar spectral energy distributions (SEDs) and is intended to ingest SEDs calculated by any
model-atmosphere code. In case of the DA white dwarf G191-B2B, we demonstrate that the model reproduces not only its overall
continuum shape but also the numerous metal lines exhibited in its ultraviolet spectrum.

Results. TheoSSA is in operation and contains presently a variety of SEDs for DA-type white dwarfs. It will be extended in the
near future and can host SEDs of all primary and secondary flux standards. The spectral analysis of G191-B2B has shown that our
hydrostatic models reproduce the observations best at T =60 000 + 2000 K and log g=7.60 + 0.05. We newly identified Fe VI, Ni V1,
and Zn 1V lines. For the first time, we determined the photospheric zinc abundance with a logarithmic mass fraction of —4.89 (7.5 x
solar). The abundances of He (upper limit), C, N, O, Al, Si, O, P, S, Fe, Ni, Ge, and Sn were precisely determined. Upper abundance
limits of about 10% solar were derived for Ti, Cr, Mn, and Co.

Conclusions. The TheoSSA database of theoretical SEDs of stellar flux standards guarantees that the flux calibration of all astronom-
ical data and cross-calibration between different instruments can be based on the same models and SEDs calculated with different

model-atmosphere codes and are easy to compare.
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1. Introduction

In the framework of the Virtual Observatory (VO), the German
Astrophysical Virtual Observatory (GAVO) project provides
synthetic stellar spectra on demand via the registered Theoretical
Stellar Spectra Access (TheoSSA) VO service (Rauch 2008a;
Rauch & Nickelt 2009; Rauch et al. 2009). These SEDs can be
used for spectral analyses (Rauch et al. 2010; Ringat & Rauch
2010; Rauch & Ringat 2011; Ringat et al. 2012) or serve as

* Based on observations with the NASA/ESA Hubble Space
Telescope, obtained at the Space Telescope Science Institute, which is
operated by the Association of Universities for Research in Astronomy,
Inc., under NASA contract NAS5-26666.

** Based on observations made with the NASA-CNES-CSA Far
Ultraviolet Spectroscopic Explorer.
*** Figures 1, 6, 10-12, 23, A.1, A.2 and Tables 24 are available in
electronic form at http://www.aanda.org

**** Table 5 and Figs. A.1 and A.2 (FITS files) are only available at the
CDS via anonymous ftp to
cdsarc.u-strasbhg. fr (130.79.128.5) or via
http://cdsarc.u-strasbg. fr/viz-bin/qcat?]/A+A/560/A106

Article published by EDP Sciences

ionizing spectra for e.g. photoionization models of ionized neb-
ulae. The registered TMAW VO tool!, that allows to calculate
individual NLTE model atmospheres considering opacities of
H, He, C, N, O, Ne, Na, and Mg, provides additional SEDs
which are automatically ingested by TheoSSA. Figure 1 shows
the complete action scheme for a VO user to retrieve an SED.

With the increasing usage of TheoSSA over the last years,
it became necessary to demonstrate the reliability of the SEDs.
We established simple benchmark tests (Ringat et al. 2012) to
show the achievable analysis precision, e.g. in the determina-
tion of effective temperatures (7.) and surface gravities (log g),
in cases that TMAW SEDs are used which are calculated with
standard model atoms that are limited in the number of atomic
levels treated in NLTE. This guarantees model calculations in a
reasonable time for a VO user.

Since 2012 TheoSSA also includes synthetic spectra of spec-
trophotometric standard stars. In this paper, we start to system-
atically establish a database of these and address the reliability

! Tiibingen Model-Atmosphere WWW Interface, http://astro.
uni-tuebingen.de/~TMAW
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Table 1. Parameters of the HST DA standard stars (Gianninas et al.
2011).

Name WD no.“ Ter logg
K] [em/s?]
GI191-B2B 0501 + 527 60920 + 993 7.55 +0.05
GD71 0549 + 158 33590 + 483 7.93 +0.05
GD 153 1254 + 223 40320 + 626 7.93 +0.05
HZ 43A° 1314 + 293 56800 + 1249¢  7.89 = 0.07

Notes. @ WD numbers are from McCook & Sion (1999). » HZ 43A
is only used in the UV because of contamination at longer wavelengths
from its M-dwarf companion. ¢ Beuermann et al. (2006, 2008) deter-
mined Tz =51111 + 660 K and log g=7.90 + 0.080.

of state-of-the-art model-atmosphere spectra and the achievable
limits in future flux calibration.

White dwarfs (WDs) are ideal objects for the calibration
of astronomical observations (Rauch 2012). They are relatively
simple objects and their radiation is determined by fundamen-
tal physics, e.g. their radius is defined by electron degeneracy.
Moreover, they are nearby and their distance can be measured
precisely, at least by the upcoming GAIA? mission (cf. Pancino
et al. 2012, for a description of the GAIA spectrophotomet-
ric standard stars survey). Most of the hot, hydrogen-rich WDs
(spectral type DA) with T.g < 40000 K have virtually pure
hydrogen atmospheres (gravitational settling), while the hotter
WDs exhibit lines of heavier elements due to radiative levitation.
WD spectral modeling requires adequate observations (WDs are
intrinsically faint) and state-of-the-art theoretical model atmo-
spheres that account for reliable physics and deviations from
local thermodynamic equilibrium (LTE).

The hot DA-type WD G191-B2B (BD+52°913) is, together
with GD 71, and GD 153, one of the primary flux reference
standards for all absolute calibrations from 1000 to 25000 A
(Bohlin 2007). Recent results for their 7. and logg are sum-
marized in Table 1. G191-B2B, the hottest and visually bright-
est (my = 11.7228, van Leeuwen 2007) isolated WD (with a
well known distance of 57.96pc, Anderson & Francis 2012)
of the sample, is ideal for panchromatic calibration from the ul-
traviolet (UV) to the infrared (IR) wavelength range. However,
due to its high Ty and relatively low log g, radiative levitation
competes against gravitational settling and holds trace elements
in the photosphere and exhibits many weak metal lines (e.g.
Barstow et al. 2003) in its observed UV spectrum.

A variety of previous spectral analyses of G191-B2B
(Table 2) had shown that it is difficult to determine its 7.y pre-
cisely. Barstow et al. (1998) found that the metal content in
the photosphere has a strong impact on the determined Teg.
Tesr = 60920 K was found by the most recent analysis (Gianninas
et al. 2011) who considered only C, N, and O (at solar abun-
dances) in their models. The neglect of other metals calls for
improved models with better metal opacities. The same may be
true for HZ43A even if metals are below the detection limit of
the available spectra (Table 1).

Many abundance analyses were performed, most of them
(e.g. Barstow et al. 2005), were based on previous T.g deter-
minations from Balmer-line fits (cf. Table 2) and not from self-
consistent fits to models with varying metal abundances. Lanz
et al. (1996) measured He, C, N, O, Si, Fe, and Ni abundances,
Holberg et al. (2003) determined abundances of C, N, O, Al, Si,

2 http://www.esa.int/Our_Activities/Space_Science/
Gaia_overview
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Fe, and Ni and gave upper limits for Mg, Cr, Mn, and Co. The
compiled abundances are listed in in Table 3.

Based on a grid of state-of-the-art line-blanketed NLTE
model atmospheres that include opacities of all identified metals,
we perform a detailed spectral analysis. We describe the avail-
able observations in Sect. 2, followed by a brief introduction to
our model atmosphere code and the atomic data (Sect. 3). The
spectral analysis is summarized in Sect. 4 and we end with our
conclusions (Sect. 7).

2. Observations
2.1. FUSE data

G191-B2B was observed many times over the course of the
FUSE mission in the wavelength range 910 A-1190 A, both for
calibration purposes and for studies of the interstellar medium.
For the present study, only observations obtained in the first
eight months of the mission through the LWRS spectrograph
aperture were analyzed. This time period included the major-
ity of the LWRS exposure time obtained during the mission, and
had the secondary benefit that the detectors had not yet suffered
much degradation from gain sag. The observation IDs of the
datasets were: M1010201, M1010202, M1030602, P1041203,
and S3070101.

Apart from a few quirks affecting the M1010201 and
M1030602 observations, which were among the first obtained
during the mission, the quality of the data is excellent. No
SiC data were obtained in observations M1010201 or M1030602
as a result of channel mis-alignment. Otherwise: exposure-to-
exposure variations in flux were typically well under 1%, in-
dicating good channel alignment. The detector region used to
record spectral image data for LiF2b was offset from the actual
spectrum position in the M1010201 observation, so those spec-
tra were discarded. The net exposure times were 33.3 ks for the
SiC channels, 36 ks for LiF2b, and 40 ks for LiF1 and LiF2a.

No special processing was applied to data from individ-
ual exposures. Raw data were processed with CalFUSE v3.2.3.
Zero-point offsets in the wavelength scale were adjusted for each
exposure by shifting each spectrum to coalign narrow interstel-
lar absorption features. In order to assess the influence of geo-
coronal airglow emission, spectra obtained during orbital day
and night were combined separately. All the observations were
obtained in spectral image (“histogram’”) mode, so no informa-
tion on photon arrival time was available within an exposure.
However, the timeline table in the intermediate data files was
examined for each exposure to determine the time spent in the
“Day” and “Night” portions of the orbit. If the “Day” portion of
such an exposure exceeded 15% of the total exposure duration,
it was included with the other Day spectra. Because histogram
mode exposures were short, most exposures were entirely Day
or entirely Night.

The individual exposures from all five observations were
then combined to form composite Day and Night spectra for
each channel. The Day and Night spectra were then compared
at the locations of all the known airglow emission lines. If
the Day spectra showed any excess flux in comparison to the
Night spectra at those locations, the corresponding pixels in
the Day spectra were flagged as bad and were not included in
subsequent processing. Significant airglow emission during or-
bital Day was seen for most observations at HI Ly through
Lyd, and O144988,1027,1028, 1039 A. Significant airglow
was present during orbital night only at Ly S; this affects the
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interstellar-absorption profile but has no effect on our analysis
of the photospheric spectrum.

The final step was to combine the spectra from the four in-
strument channels into a single composite spectrum. Because of
residual distortions in the wavelength scale in each channel, ad-
ditional shifts of localized regions of each spectrum were re-
quired to coalign the spectra; such shifts were typically only
one or two pixels. Bad pixels resulting from detector defects
were flagged at this point and excluded from further process-
ing. Finally, the spectra were resampled onto a common wave-
length scale and combined, weighting by signal to noise on a
pixel-by-pixel basis.

The signal to noise of the final combined spectrum is limited
by fixed-pattern noise in the detectors. The final spectrum has a
minimum of roughly 20 000 counts per 0.013 A pixel in the con-
tinuum, near the Lyman edge, and 60000-130000 counts per
pixel long-ward of 1000 A. The effects of fixed-pattern noise
are minimized by the fact that the positions of the spectra on
the detectors varied during each observation, and by the fact
that nearly every wavelength bin was sampled by at least two
different detectors.

2.2. HST data

As described in detail by Bohlin & Gordon (in prep.), the
HST/STIS low-dispersion flux calibration is derived from an
ensemble match to the NLTE TLUSTY (version 203) model
atmosphere SEDs for pure hydrogen (Hubeny & Lanz 1995).
The models are for G191-B2B, GD 71, and GD 153. Originally,
HZ 43 A was also used as a standard star but fell off the list of pri-
mary flux standards because of an M star companion that con-
taminates the STIS observations in the visible and IR (Bohlin
et al. 2001).

For the STIS échelle modes, the flux calibration is based only
on the TLUSTY model for G191-B2B. The échelle absolute
fluxes are less precise than for low dispersion because of the sin-
gle model for the reference fluxes, because of imprecision in the
matching of the separate echelle orders, and because the plethora
of weak lines at the shorter wavelengths are missing in the refer-
ence SED. However, the STIS echelle narrow metal line profiles
are unaffected by uncertainties in the absolute fluxes.

For the highest STIS resolution of ~3 km s~!, there are
two modes, namely E140H and E230H, which require sev-
eral central wavelength settings for complete wavelength cov-
erage from 1145-3145 A. Because G191-B2B is the primary
STIS échelle calibration star with repeated observations, 105 ob-
servations in the 072 x (/2 aperture are available from the
Mikulski Archive for Space Telescopes (MAST)?. Each spec-
trum is resampled to a wavelength grid with a sampling inter-
val corresponding to a resolving power of R = 2.3 x 10° and
co-added. The number of individual observations at each wave-
length point ranges from 4—44, while the total exposure time
ranges from 6400—64 000s at each point. The total counts in
electrons at each point in the continuum are typically well above
1000 and range up to over 10000 from 1225-1400 A, where the
statistical uncertainty is sometimes better than 1%. The high-
dispersion échelle spectrum is available from the CALSPEC*
database along with the STIS low-dispersion data.

3 http://archive.stsci.edu/
4 http://www.stsci.edu/hst/observatory/cdbs/calspec.
html
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Fig. 2. Comparison of STIS and FUSE observations around HI L a6
with our final model. Thick (red in the online version) photospheric +
ISM line absorption model with Ny, = 2.2 x 10" cm™2; thin (blue)
pure photospheric model; dashed (green, La only) Ny, = 1.2 X
10" cm™2, 3.2 x 10'® cm™2. The locations of the D I blends are marked.
L -6 are shifted in flux (0.7, 1.6, 2.7x 10~"" ergem™2 s™' A~") for clar-
ity. A reddening of Eg_y = 0.0005 is applied following the law of
Fitzpatrick (1999, with Ry = 3.1).

The photospheric radial velocity v, = 22.1 + 0.6 kms™!
measured by Holberg et al. (1994) matches well our STIS
observation. We adopt this value for our analysis.

2.3. Interstellar line absorption and reddening

The interstellar neutral hydrogen density Ny, was determined
from the comparison of our final model with the STIS and
FUSE observations (Fig. 2). In all plots shown in this paper, we
modeled the interstellar medium (ISM) line absorption (using
Voigt line profiles) with WRPLOT?. The best match is found

for log (Nygi/cm?) = 18.34’:8:?(8). The D1 blends to HI La—-6

are clearly visible and best reproduced at log(Np;/cm?) =
13.54700 i.e. D/H = 1.5970¢} x 107>, Our values are in good
agreement with those determined by Lemoine et al. (2002),
log (Ny;/cm?) = 18.18 + 0.18 and D/H = 1.66’:8:2 x 107 (both
with 20 errors).

Besides HIand D1, we identified interstellar lines of CII-1V,
NI-1, O1, Al1, Sit—110, P1-11, SI-1I, and Fe1I in the FUSE
and STIS spectra (Table 5). To identify pure photospheric lines
that are contaminated by ISM lines, we modeled all of these and
found that we need two distinct clouds with vg = 9 + 1 kms™!
and vraq = 19+ 1 kms™!. This is well in agreement with the mea-
surements of Sahu et al. (8.6 +1.7kms™" and 19.3+2.5 kms™!
1999), who assigned the latter value to the local interstellar
cloud. Dickinson et al. (2012b) measured 8.5 + 0.18 kms™!
and 19.3 + 0.03 kms~!. They unambiguously detected that the
first cloud is of circumstellar origin. An additional third cloud
with intermediate velocity like assumed by Vidal-Madjar et al.
(1998, v = 8.2,13.2,20.3 (0.8 kms™!) is not necessary for
our modeling (Fig. 3, top).

Interestingly, we find additional weak absorptions of
0111302.163A and N1.11199.550,1200.223,1200.710 A
at vgg of —=26.3 kms™! and —26.1,kms™!, respectively. These

5 http://www.astro.physik.uni-potsdam.de/~htodt/
wrplot/index.html
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Fig.3. STIS spectrum around the interstellar absorption lines
OT A1302.163 A (top) and NT A11199.550, 1200.223, 1200.710 A
(bottom) compared with the synthetic spectrum of our final model
where the ISM lines are included. The labels give the radial velocities
(in km s~!) that are applied.
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Fig. 4. Comparison of FUSE and HST (STIS and NICMOS) observa-
tions with our final model. A reddening of Ep_y = 0.0005 is applied.
The low-resolution (LR) STIS+NICMOS observation vanishes behind
the model SED due to the line width. Therefore, we plotted the ob-
served spectrum twice, one shifted by Alog f) = —0.2 for clarity. U, R, I
(Landolt & Uomoto 2007), B,V (Hgg et al. 2000), J, H, and K (Cutri
et al. 2003) fluxes (converted from brightnesses using values given by
Heber et al. 2002) are shown for comparison.

velocities are reminiscent of the expansion velocity of a plane-
tary nebula shell (e.g.. Kwok et al. 1978), that for a stellar mass
of M = 0.555 M, (Sect. 4.6) must have been ejected more than
500000 years ago (Renedo et al. 2010). Its recombined, neutral
gas, however, is still in the line of sight.

From the low interstellar Ny, density, we expect a low inter-
stellar reddening. The Galactic reddening law of Groenewegen
& Lamers (1989), log (Ny,/Ep-y) = 21.58 = 0.10, predicts
0.0003 < Ep-y < 0.0007. Figure 4 shows a comparison of
observations and synthetic spectrum from the far UV (FUV) to
the IR. We find Ez_y = 0.0005 + 0.0005.
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3. Model atmospheres and atomic data

Table 2 demonstrates clearly that a panchromatic analysis from
the EUV to the optical is inevitable for accurate results on pho-
tospheric parameters. Moreover, NLTE modeling is mandatory
to calculate a reliable synthetic spectrum.

Lanz et al. (1996) presented the first NLTE model (Table 2)
that reproduced the observed spectrum from the EUV to the op-
tical wavelength range. Barstow & Hubeny (1998) introduced
then a stratified H+He envelope including heavier metals in
their models to improve the match to the observed flux below
the HeIl absorption threshold (1 < 228 A). Later analyses
had shown that there is further evidence for a stratification in
G191-B2B’s photosphere. Vennes et al. (2000) closely exam-
ined Feige 24 that, compared with G191-B2B, has similar at-
mospheric parameters and an almost identical abundance pat-
tern. They found that the O1v/OV ionization equilibrium is
overcorrected by —0.8 dex in their NLTE model. They concluded
that this might reveal an inhomogeneous vertical stratification of
oxygen in both stars. A later analysis of both stars (Vennes &
Lanz 2001) showed that the average heavy-metal abundance in
Feige 24 is 0.17 dex larger compared to the cooler and, hence,
older G191-B2B (same log g). Thus, the abundance pattern is
determined by the same processes in both stars and the authors
assumed that selective radiative pressure and gravity are in diffu-
sive equilibrium. This was proven by Dreizler & Wolff (1999).
They used self-consistent diffusion models (Table 2) that were
able to reproduce the observed flux for 1 < 228 A without ad-
ditional absorbers or mechanisms. However, problems remained
with the fit to the UV lines.

Now, our strategy to proceed with the analysis is threefold.
We start with chemically homogeneous models to find the model
that reproduces best the continuum slope and the spectral lines
from the FUV to the optical (Sect. 4). In an intermediate step,
we will then apply the depth-dependent abundance profiles cal-
culated by Dreizler & Wolff (1999) to our final homogeneous
model to investigate the impact of chemical stratification on
the emergent spectrum (Sect. 4.3). In the last step, a diffusion
model is calculated and compared with the homogeneous model
(Sect. 4.4).

4. Spectral analysis and results

The metal-line blanketed NLTE model atmospheres for our anal-
ysis were calculated with the state-of-the-art Tiibingen NLTE
model-atmosphere package (TMAP®, Werner et al. 2003), which
can consider opacities of all elements from H to Ni and be-
yond (Rauch 1997, 2003; Werner et al. 2012; Rauch et al. 2012).
TMAP was successfully used for the spectral analysis of hot,
compact stars (e.g. Rauch et al. 2007; Wassermann et al. 2010;
Ziegler et al. 2012).

Our models assume plane-parallel geometry and are in hy-
drostatic and radiative equilibrium. Opacities of all species for
which spectral lines are identified, namely H, He, C, N, O, Al,
Si, P, S, Ca, Sc, Ti, V, Cr, Mn Fe, Co, Ni, Zn, Ge, and Sn,
were considered in the model-atmosphere calculations. For all
elements, we account for level dissolution (pressure ionization)
following Hummer & Mihalas (1988) and Hubeny et al. (1994).
Figure 5 demonstrates that our HT model ion (Table 4) includes
all levels that are relevant in the line-forming region —4.5 <
log [m/(g/cm?)]. All model atmospheres presented here cover

6 http://astro.uni-tuebingen.de/~TMAP
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Fig. 5. Occupation probabilities of the H1 levels with principal quantum
numbers n = 1-14 in our final model.

column densities m of —7.6 < logm < 3.2 (cf. Beuermann et al.
20006) represented by 90 depth points.

The model-atoms and respective absorption cross-sections
for Ca—Ni were calculated via the recently registered VO service
TIRO’ that uses Kurucz’s atomic data® and line lists (Kurucz
1991, 2009, 2011).

Ca, Sc, Ti, V, Cr, Mn, and Co lines are not identified. These
were merged into a generic model atom (Rauch & Deetjen 2003)
with fixed solar abundance ratios. Then, we performed test cal-
culations and adjusted the abundance to a value (1.78 x 107 by
mass, the solar value is 9.93 x 107) where all of its lines just
fade in the noise of the observed spectra. All other model atoms
were constructed from data retrieved from the public Tiibingen
model-atom database TMAD?®.

In total, we considered 1038 atomic levels in NLTE com-
bined with 4646 line transitions (for the number of individual
iron-group lines, see Table 4) in the model-atmosphere calcula-
tions with 53203 frequency points within 1 x 10"?Hz < v <
3 x 10'7 Hz. For the emergent spectra (100 A < 1 < 400000 A,
686 196 wavelength points), we account for fine-structure split-
ting and used 1585 NLTE levels and 9721 respective line tran-
sitions. The model-atom statistics are summarized in Table 4.
Figure 6 shows the ionization fractions of all elements in our fi-
nal model. It may be interesting to note that a single model atmo-
sphere needs about one week to converge, i.e. the absolute values
of all relative corrections are below 107%, on a 64 bit, 2.66 GHz
compute core with 8 GB memory.

For the calculation of synthetic HI line profiles, we use
Stark line-broadening tables provided by Tremblay & Bergeron
(2009). For those lines, where no broadening tables are available,
TMAP uses an approximate formula, as described in Ziegler
et al. (2012, Egs. (1)—(5)).

We started with a model with 7.z =60 920 K and logg=7.55
(the values of Gianninas et al. 2011) and the element abun-
dances from Table 3. Next, we adjusted these abundances to best
reproduce the respective spectral lines. We then calculated an
extended grid of 234 model atmospheres (48000K < T <
68 000K in steps of <1000K and 7.35 < logg < 7.75 in
steps of 0.05 (some of the hotter models are calculated only
for logg < 7.60). For this grid, we extensively used compute
resources of the bwGRiD!? in addition. Although this highly
speeded up the model-grid calculation, the wide parameter range

7 http://astro.uni-tuebingen.de/~TIRO
8 http://kurucz.harvard.edu/atoms.html
° http://astro.uni-tuebingen.de/~TMAD
19 http://www.bw-grid.de/en/the-bwgrid/

and the large number (15) of parameters to adjust simultaneously
did not allow us to take a statistical approach in the spectral anal-
ysis (x> method like e.g. in Gianninas et al. 2011) on a reason-
able time scale. We therefore need to rely upon our “y-by-eye”
methods. All SEDs that were calculated for this analysis are
available via TheoSSA!!.

In a first analysis step, we will determine log g based on UV
and optical observations. Then, we will determine 7. precisely
based on ionization equilibria of the metals which are sensitive
indicators. Subsequently, we will adjust the abundances again
and verify our Tt and log g results.

4.1. Surface gravity and effective temperature

The dependency of the synthetic flux level on T.g and logg
for fixed abundances is demonstrated in Fig. 7, where we com-
pare the observed and synthetic fluxes in the FUV. In the top
panel, it is obvious that at a constant T.g=60920K, a logg
higher by 0.2 dex than log g=7.55 measured by Gianninas et al.
(2011) is necessary to reproduce the Lyman-line decrement. For
a fixed log g =7.55 (middle panel), a lower Tt (A Teg = 6000 K)
improves the agreement between model and observation. The
bottom panel shows that at values within the (statistical) error
ranges from the HI Balmer-line analysis, T.g=60000K and
logg=17.60 (cf. Table 2 Gianninas et al. 2011), a good agree-
ment for both, line profiles and decrement, is achieved.

This was not expected from the outset although Barstow
et al. (1998) found a relatively good agreement of Tt and logg
from HI Lyman and Balmer lines in the heavy-metal rich mod-
els (Table 2). The later analysis by Barstow et al. (2001, Table 2)
shows strong deviations in log g between optical and FUV anal-
yses. Figure 8 shows a comparison of synthetic HI Balmer line
profiles with optical observations. The deviation between the
Tex=60920K /log g="7.55 and the 60 000/7.60 ones is minor.

In addition to the low-resolution (R =~ 500) optical spec-
trum, medium-resolution (R ~ 6000) observations of Ha and
Hp are shown is Fig. 9. The agreement among the STIS low and
medium resolution is excellent. While the model absorption is a
bit weak as shown in the lower plot of Fig. 9, the central NLTE
emission reversal agrees well with the observations.

Although we cannot reproduce Ha and Hg in detail in the
medium-resolution spectrum, this has no significant influence
on our determination of T.¢ and log g because the higher mem-
bers of the HI Balmer series form much deeper in the atmo-
sphere where the influence of metal opacities is less important
(cf. Napiwotzki & Rauch 1994). We adopt log g =7.60.

In the next step of this analysis, we evaluate ioniza-
tion equilibria of metals that exhibit lines of successive ion-
ization stages. Figures 10-12 show some strategic lines for
this 7. determination. In total, we can use eight elements and
lines of CIlI-1v, NIII-V, Silll-1v, PIv—V, S1Vv-V, FeIv-VI,
Ni1v—VI, and Ge IV-V. T =60 000 + 2000 K reproduces well
all these equilibria simultaneously. For our further analysis, we
adopt T =60 000 K.

4.2. Photospheric abundances

In the following, we use logarithmic mass fractions for all abun-
dance values, if not otherwise mentioned. Previously determined
abundances and respective references are summarized in Table 3.
In the following, we will briefly mention the strategic lines for

I http://dc.g-vo.org/theossa
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Fig. 7. Section of the FUSE observation compared with our model fluxes with different 7.4 and log g. In the top and middle panels, the synthetic
fluxes are normalized to the observed flux at 1000 A and in the bottom panel to the observed K magnitude (see Fig. 4). E_y and Ny, are applied

using our results from Sect. 2.3.

the abundance determinations and note abnormalities for an el-
ement selection only. Most of the identified metals exhibit lines
of at least two subsequent ionization stages and some of these
lines were already used for the determination of Tg (Sect. 4.1).
The abundances were then adjusted to achieve best line fits.
Two large plots (Figs. A.1, A.2, German DIN AO size) are pro-
vided in the online material that show a comparison of our final
model with the observation in the FUSE and STIS wavelength
ranges (in total 911-1750 A). They include all line identifica-
tions (FUSE/STIS wavelength range), e.g. 2/421 Fe1v, 144/815
Fev, 1/52 Fe v, 1/236 Ni1v, 13/690 Ni v, and 9/43 Ni VI lines.
These numbers are much higher than those of Preval et al. (2013,
106 Fe v and 44 NiV lines in the STIS wavelength range). The
recent work of Berengut et al. (2013) to employ G191-B2B as
a stellar laboratory to determine the fine-structure constant is
based on the latter list and may, thus, not fully exploit capacity
of all the available STIS spectra of G191-B2B.

Our line identifications are also summarized in Table 5,
whereas Table 6 gives a list of the strongest unidentified lines.
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4.2.1. Helium

The first analyses revealed only upper limits for the He abun-
dance, e.g. He < —3.1 and <4.1 (Vennes et al. 1996; Gunderson
et al. 2001, respectively). Cruddace et al. (2002) determined
He= —-4.2 + 0.1 using high-resolution EUV spectroscopy. An
attempt to identify and measure He IT Lyman lines (n —n’ = 1-4,
1-5) with J-PEX'? (Barstow et al. 2005) was not successful. Our
models show that Hen 11640 A (2-3) should be clearly visible
atHe = —3.7 and —4.2 and disappears in the noise of the observa-
tion only at about He < —4.7 (Fig. 13). We adopt this upper-limit
value for our models.

4.2.2. Carbon, nitrogen, and oxygen

C11 and C1V lines are visible igl the observation. C 1977.02 A
and C1v A4 1548.20, 1550.77 A have strong ISM blends. In case

12 Joint Astrophysical Plasmadynamic Experiment
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Fig. 8. Synthetic HI Balmer-line profiles compared with the STIS LR
observation. The observation is shifted by factors of 0.921, 0.323,
0.232, 0.202, 0.193, and 0.188 for Ho — H{, respectively, to fit into
this plot. Red, full line: T.z=60000K and log g=7.60; blue, dashed:
T =60920K and logg="7.55.
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Fig.9. STIS Ha and HB low-resolution (dashed, blue) and medium-
resolution (gray lines) observations (labeled with medium-resolution
grating/central wavelength in A). Because of uncertainty in the flux
calibration, the medium-resolution data are normalized to the low-
resolution flux. The flux around Hg in the top plot is multiplied by a
factor of 0.35. The red lines in the upper two plots are the medium-
resolution (R ~ 6000) spectra degraded to the low resolution (R =~ 500)
and agree with the low resolution (blue dash) within the uncertainty of
the R = 500 resolution. The lower two plots are shifted down by 0.035
and 0.07 x 10~'3 flux units, respectively. In the lowest plot, the model is
overplotted in red after smoothing to the medium resolution. While the
model Her absorption is somewhat too weak, the central emission agrees
with the observation within the uncertainty of the resolution (insert).

of the latter, the photospheric component can be separated and
modeled (Fig. 10). At C = —5.15, lines of both ions are well
reproduced.

N1- Vv lines are found in the observation, they are all well
matched at N = —5.58 (Fig. 10).

Vennes et al. (2000) encountered deviations between oxy-
gen abundances determined from OTV and OV lines in an

Table 6. Wavelengths (in A) of unidentified strong (W, > 10 mA),
likely photospheric lines in the FUSE and STIS observations.

FUSE
989.11 1029.44 1133.04 114291
STIS
1157.60 117329 1183.82 1201.51 1283.52
1158.08 1174.34 1186.08 1201.81  1306.04
1158.76  1176.11 1186.27 1202.43 1331.19
116531 1176.52 1186.59 1204.47 1385.32
1166.80 1176.64 1187.70 1227.55 1389.89
1171.12  1176.87 1190.15 1253.67 1398.21
1171.19  1176.98 1192.01 1253.87 1411.46
117145 1177.06 1194.16 1258.81 1516.68
1172.18 1178.68 1198.15 1260.48 1520.64
117234 1182.00 1201.30 1272.98 1525.32
117322 118337 120147 1281.37 1538.94
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Fig. 13. Synthetic spectrum around He 11 11640.42 A compared with
the STIS observation. He abundances are green, dashed: —10.0, red,
thick: —4.7, blue, thin: —4.2, blue, dashed: —3.1. The insert shows the
region Al = 0.4 A around the He I line. For comparison, the obser-
vation was smoothed with a low-pass filter (Savitzky & Golay 1964,
n=15m=4).

analysis of Feige24. The OV abundance was 0.5dex higher
in their LTE model approach. In their NLTE models, they
found that the OIV / OV ionization equilibrium was overcor-
rected by —0.8dex. They suggested an inhomogeneous strati-
fication of O in the atmosphere. Vennes & Lanz (2001) dis-
covered that a similar problem exists in G191-B2B, with an
overcorrection of —0.6 dex. Consequently they assumed that in
both stars, the interplay between selective radiation pressure and
gravity in diffusive equilibrium are the key processes for this
phenomenon. Figure 14 shows the same deviation in our mod-
els. While O1v A1 1338.615, 1342.990, 1343.526 A are well fit-
ted at O = —4.72, 0 v 11371.296 A is apparently much stronger
than observed. It is matched with an O abundance that is reduced
by —0.4 dex.

In the FUSE observation, only the short wavelength com-
ponent of the Ovi A41031.912, 1037.614 A resonance doublet
is detectable. The unexpected weakness of this doublet was al-
ready reported by Oegerle et al. (2005). Dickinson et al. (2012b)
verified that it stems from the photosphere. The O VI reso-
nance doublet in our models is even stronger, compared to
O1v and OV lines, requiring a reduction of the O abundance
by about —1.5dex (Fig. 14). Dickinson et al. (2012a) encoun-
tered a similar problem with enigmatically deep line profiles of
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Fig. 14. Most prominent O 1V, O v, and O V1 lines in the STIS and FUSE
observations compared with our theoretical line profiles calculated with
three O abundances (O = —4.72, -5.12, —6.24, from top to bottom).
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Fig. 15. Theoretical AlTII line profiles calculated from our final model
compared with the STIS observation.

the NV resonance doublet in their models. We revisit the prob-
lem with the oxygen abundances derived from different ioniza-
tion stages in Sects. 4.3 and 4.4 in detail.

4.2.3. Aluminum, silicon, phosphorus, and sulfur

Holberg et al. (1998) identified the Al A4 1854.72, 1862.79 A
resonance doublet in the IUE NEWSIPS SWP Echelle Data
Set'3, and Holberg et al. (2003) measured Al = —5.08. We could
newly identify some other AITII lines. We derive Al = —4.95,
well in agreement with the Holberg et al. (2003) value (Fig. 15).

Sill-1v, P1v—V, and S V- VI lines are identified. We deter-
mine Si = —4.30,P = -5.81, and S = -5.24 (Fig. 10).

13 http://vega.lpl.arizona.edu/newsips/
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4.2.4. Iron-group elements

Many hundreds of lines of Felv—vI and NiIv-vi are iden-
tified (Table 5). They are best reproduced at Fe = -3.30
and Ni = -4.45. Note that the Ni/Fe abundance ratio is
about 25% higher than the solar ratio. Some of these lines are
shown in various figures in this paper, please have a look at
the two large online figures that show the complete FUSE and
STIS wavelength ranges. An animation of STIS wavelength
range can been seen at http://astro.uni-tuebingen.de/
~rauch/A0_E140H_SW.gif as well.

In Fig. 15 three lines of Cr1v and one of CoIV are visible in
the synthetic spectrum of our final model. These are weak and
comparable to the noise of the observation. Although one may be
tempted to believe the presence of Criv 11863.075 A, we take
this as a hint that a log mass fraction of —5.75 for the generic
model atom is reasonable and adopt this as an upper limit for our
analysis. This is, within the error limits, in agreement with the
upper limits for Cr, Mn, and Co of about —6.2 that were found
by Holberg et al. (2003).

Preval et al. (2013) suggested that the unidentified line
at 127298 A is a VIV line. Since many other VIV lines
with much stronger loggf values (g is the statistical weight
of the lower atomic level and f is the oscillator strength
of the line transition) from Kurucz’s POS line lists (with
good wavelengths) are not present in the spectrum, e.g.
Vv A11355.127, 1419.577, 1426.647 A (all more than ten
times higher loggf) therefore this identification appears to be
very unlikely.

We mention here that we find deviations between Kurucz’s
POS wavelengths and the observation of up to 0.05 A. In addi-
tion, Fig. 13 shows that the strengths of Fe1v 11640.042 A and
Fe1v 11640.155 A in the model are the opposite way around in
the observation.

Figure 16 shows a comparison of models (calculated with
Kurucz’s POS lines) in the FUSE and STIS wavelength ranges
where in each case the abundance of an individual element X in
the construction of the generic (Ca, Sc, Ti, V, Cr, Mn, Co) model
atom is increased by a factor of ten. Values higher that 1 in the
flux ratio indicate stronger lines of element X.

E.g. the case of Ti, two lines are much stronger than all oth-
ers, Titv A1 1451.739, 1467.343 A. They are not identified in the
observation but at the ten times increased abundance they are
clearly visible in the model. The same is valid for Cr, where
Criv A11332.415 A and Crvi A1 1417.660 A are the strongest
lines in our models (Fig. 16), and for Mn and Co as well. This
allows us to establish upper abundance limits of about 10% solar
for Ti, Cr, Mn, and Co (cf. the beginning of Sect. 4).

4.2.5. Zinc, germanium, and tin

21 Zn1v lines are newly identified in the STIS observation.
These are almost all that are listed in the NIST!* database with
relative intensities higher than 100. Since no individual calcula-
tions for Zn1V transition probabilities are available, we adapted
those of the isoelectronic Ge VI (Rauch et al. 2012). In Fig. 17,
we show nine of them with NIST relative intensities of 200. All
their theoretical line profiles are reproduced at Zn = —4.89.

For Ge, we used the same model atom as Rauch et al. (2012)
and determined Ge = —5.49 (Fig. 10).

4 http://physics.nist.gov/PhysRefData/ASD/lines_form.
html
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Fig. 16. Flux ratio of our final model and a model with ten times in-
creased abundance of element X (Ca to Co, from top to bottom). The
location of V1V 11272.98 A is marked.

We constructed a relatively small Sn model atom. The only
lines for which reliable oscillator strengths are available are the
Sn1I and Sn 1V resonance lines (Morton 2000). For all other al-
lowed transitions, we follow Werner et al. (2012) and set f = 1.
We used the Sn1v A 1314.537 A resonance line, like Vennes et al.
(2005), to measure the abundance of Sn = —6.45.

4.2.6. Summary of results with chemically homogeneous
models

We can reproduce the entire ultraviolet spectrum of G191-B2B
with our chemically homogeneous NLTE models, with the
exception of the OTIV/VI lines which are obviously af-
fected by O stratification effects. Current diffusion models
yield poor fits to the metal lines (Dreizler & Wolff 1999).
T =60000 + 2000 K and log g=7.60 = 0.05 were determined
within small error limits. They are in agreement with Gianninas
et al. (2011, Ter=60920 £ 993 K, logg=7.55 = 0.05). We do
not encounter problems in modeling HI Lyman and Balmer
lines simultaneously with the same Tt and log g like found by
Barstow et al. (2001, see Table 2).

We can determine all abundances with error limits of 0.2 dex.
In case of Zn, where we adopt Ge VI f-values, we estimate that
the error is 0.3 dex. Our C, N, O, Al, Si, Fe, and Ni abundances
(Fig. 18) agree, within error limits, with those of Vennes et al.
(1996); Holberg et al. (2003); Vennes et al. (2005). Our val-
ues are in general slightly higher. One reason may be the about
6000 K higher T.g of our final model. The stellar parameters are
summarized in Table 8.

The abundances of all elements but Fe predicted by Chayer
et al. (1995) for a DA-type WD differ strongly from those that
we determined (Fig. 18).

4.3. Test of the diffusion impact

In a first step, we simply applied the abundance profiles provided
by Dreizler & Wolff (1999) to the occupation numbers of He, C,
N, O, Si, and Ni in our final model. Figure 19 (top panel) shows
that this gives a good agreement with O vV while O 1V is now too
weak. The O VI lines appears even stronger, strengthening the
discrepancy. Since the atmospheric structure was kept fixed in
this test, we expected that, if at all, only a self-consistent dif-
fusion model is able to reproduce the observed OTV— VI lines
simultaneously.

4.4. A self-consistent diffusion model

We used the NGRT" code (Dreizler & Wolff 1999; Schuh et al.
2002) to calculate diffusion models with the same element com-
position and model atoms like our homogeneous TMAP mod-
els. The first model shows a strongly increased abundance of
the generic model atom that combines Ca, Sc, Ti, V, Cr, Mn,
and Co (Sect. 4) and, hence, much too strong lines of the con-
sidered elements. The reason is that the IrOnlc code (Rauch &
Deetjen 2003) calculates a mean atomic weight for the generic
atom following

2t A
sE (1

i=1Ti

A =

where r; is the relative mass-fraction (with respect to r; = 1)
and A; the atomic weight of element i. The artificially increased
number of lines of a single generic element strongly increases its
radiative levitation. Flux blocking by the generic element then
leads to stronger gravitational settling of other elements, e.g.
Sn had an abundance below 10~!'7 throughout the model atmo-
sphere. The other elements showed abundances that were partly
more than one dex below those of our homogeneous model.
Since we did not want to neglect all opacities of the generic
atom, we changed its atomic weight to

n

A[G = Z ri- A,‘. (2)

i=1

Now, the stratified NGRT models yields depth dependent abun-
dances (Fig. 20) that are closer to those of our homogeneous
model, especially Sn appears at a realistic value. In case of He,
C, N, O, Si, and Ni the abundance profiles are similar to those
of (Dreizler & Wolff 1999). The changed atmospheric struc-
ture is shown in Fig. 21. It is interesting to note that most of
the lines and all continua are formed at logm > -3 (Fig. 22)
while deviations in the temperature structure are noticeable only
outside of this region. The resulting spectrum (Fig. 23) of the

15 New generation radiative transport.
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Fig. 18. Top: photospheric abundances of G191-B2B (red stars) com-
pared with solar values (Asplund et al. 2009). [X] denotes log (mass
fraction/solar mass fraction) of element X. The dashed, green line
shows the solar ratio. The arrows indicate upper limits. The cyan dia-
monds (Holberg et al. 2003), triangles (Vennes et al. 1996), and tridents
(Vennes et al. 2005) are previously determined values. Bottom: com-
parison of our abundance number ratios (red stars) with predictions of
diffusion calculations for DA-type (blue squares) WDs (Chayer et al.
1995) with T =60000 K and log g=7.5.

stratified model is, compared with the homogeneous model, no
improvement. While Fe v lines match the observation at about
T.x=55000K, it can be extrapolated that Fe1v lines are much
too strong for T < 70000K. Ni1v and NiV lines are much
too strong because the Ni abundance is enhanced (Fig. 20) in
the line-forming regions and can, thus, not be used for a T
estimate.

In the stratified models, the O1v and OV lines are now
mucher stronger than observed and O VI appears at the same
strength that resulted from our diffusion test (Sect. 4.3).
The O abundance profile (Fig. 20) shows a strong increase
forlogm < —4.Only by the introduction of an artificial abun-
dance reduction by a factor of m/1585 for logm < -3.2, we
achieve an acceptable agreement of O vV and O VI (Fig. 19). O1v
is still slightly too strong because the abundance and, thus, the
lines (including a blend at O 1V) of the generic iron-group atom

A106, page 10 of 27

relative flux
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Fig.19. Same as Fig. 14. Top: dashed, green TMAP (=chemically
homogeneous) model with O = —4.72; thin, blue TMAP model with
abundance profiles from Dreizler & Wolff (1999), thick, red NGRT
(=diffusion) model. Bottom: thick, red NGRT model with an artificially
reduced O abundance in the outer atmosphere. Note that in the NGRT
models, the line strengths of the generic iron-group element (see text)
are overestimated.

(Sect. 3) are overestimated by the NGRT model (Fig. 20). Based
on this numerical exercise, it may be speculated that a weak stel-
lar wind or an other, unknown process that is not considered by
NGRT is responsible for the lower oxygen abundances in the
outer atmosphere.

We can conclude two things. A generic model atom is obvi-
ously not suited for a diffusion calculation due to the strongly
enhanced number of lines for a single atom in the modeling
process. The NGRT diffusion models yield partly too low abun-
dances in the line-forming regions and, thus, cannot reproduce
the metal line properly. An additional, weak wind may be nec-
essary to increase the metal abundances in the line-forming
regions.

4.5. The extreme-ultraviolet spectrum

The inability to model the EUVE spectrum with chemically ho-
mogeneous atmospheres (Holberg et al. 1989) was the reason
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Fig.20. Abundance profiles in our diffusion model (7.4=60000 K,
log g=7.60). Short-dashed (blue) lines: unrealistically high abundance
of the generic iron-group element (IG, see text), thick (red) lines: re-
duced IG abundance, horizontal long-dashed, thin (cyan) lines: the
abundances in our final homogeneous model. In the O panel, the thick
dashed (green) line shows our modified O-abundance profile (see text).

to investigate stratified photospheres (e.g. Koester 1991). Lanz
et al. (1996) demonstrated, that it is possible to consistently
match the optical, UV, and EUV data with homogeneous NLTE
models with the same Tt and chemical composition.

We calculated EUV spectra from our model grid with
193584 frequency points within 100 A < A < 930 A, and
Kurucz’s LIN line lists (theoretical and laboratory measured
lines, in total 8135405 lines of Ca-Ni in our wavelength
interval, Kurucz 2009). These spectra were processed with the
recently registered VO tool TEUV!® that corrects synthetic stel-
lar fluxes for interstellar absorption below 911 A. It simulates
radiative bound-free absorption of the lowest ionization states of
H, He, C, N, and O using Opacity Project data (Seaton et al.
1994). Two interstellar components with different radial and
turbulent velocities, temperatures, and column densities can be

16 http://astro.uni-tuebingen.de/~TEUV
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Fig. 21. Temperature structures (7; =60 000 K, log g=7.60) of a pure
H model (thin, black), our final homogeneous model (thick, red), and
a diffusion model (dashed, blue). The formation depths of the line
cores of the lowest members of the HI Lyman and Balmer series, the
C1v, Nv, Ovl, Silv, and S VI resonance doublets, and our strategic
O1V 111338.634,1343.022, 1343.526 A and OV 11371.296 A lines
are marked.
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Fig. 22. Optical depth 7 = 1 in our final homogeneous model.

considered. Figure 24 shows the comparison of synthetic and
observed EUV spectra. Our synthetic spectra were normalized
to the measured FUSE flux of 1.347 x 10 "ergem™2s~! A~! at
920 A. Then, the interstellar column densities are adjusted, to
match the EUVE flux Ny, for 530 A, Ny, for 470 A, and Ny
for 220 A. Since our models do not reproduce the measured flux
between 250 A and the He 11 ground state threshold, Ny is not
reliable. Table 7 shows the applied Ny; and Npe; values com-
pared with the literature values. Our Ny; values, necessary to
match the EUVE flux level, are about a factor of two higher
than log (Ny; / cm?) = 18.34f8:(1)(8) that we determined previ-
ously from HI Lyman-line fits (Sect. 2.3). log NNy = 13.87
and log No; = 14.86 were adopted from Lemoine et al. (2002).

The overall agreement of our homogeneous models with
Ter=60000K at wavelengths 1 > 250 A is very good, espe-
cially the interval 360 A< 1 < 450 A is excellently matched
in detail. Models with 7.z =65000K and 7.5 =55000K yield
much too high and too low fluxes, respectively. At A < 250 A the
theoretical flux is too high in all models, even at T =55 000 K.
A stratified model (Fig. 24) with T.g =60 000K fails to repro-
duce the flux between 250 A < 1 < 420 A and has a too-high
flux at 1 < 200 A.

Both, our homogeneous and our stratified models, fail to re-
produce the entire EUV spectrum of G191-B2B. It seems likely
that there may be some stratification in the atmosphere but we
don’t yet know how to distribute the various atomic species with
depth. This is a challenge for theorists.
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Fig.24. Top: comparison of three synthetic spectra (Tex = 55000,
60000, and 65000 K) of chemically homogeneous models with the
EUVE observation. The wavelengths of ground-state absorption thresh-
olds of He ions are indicated. Bottom: comparison of a stratified model
T =60000 K with the observation.

Table 7. Logarithmic ISM column densities for homogeneous models
with different 7. to match the EUVE flux level of G191-B2B.

Ten/K Nu Nee:

Homogeneous (TMAP)

55000 18.53 17.45

60000 18.59 17.45

65000 18.64 17.45

Stratified (NGRT)

60000 18.60 17.45

Literature

59250 18.23 17.16 Kimble et al. (1993, HUT)
54000 18.27 17.16  Dupuis et al. (1995, EUVE)
55200 18.32 17.26 Lanzetal. (1996, EUVE)

56 000 18.32 17.15 Dreizler & Wolff (1999, EUVE)
53000 18.28 17.16  Vennes & Lanz (2001, EUVE)
54000 18.33  17.34  Cruddace et al. (2002, J-PEX)

4.6. Mass and distance

A stellar mass of M = 0.55500%> M and a luminosity of

log(L/Ly) = 0.63f8§1 are determined by comparison with evo-
lutionary models (Fig. 25) for old white dwarfs (metallicity
z=10.001).

We calculated the spectroscopic distance following the flux

calibration of Heber et al. (1984b) for A.g = 5454 A,

dlpc] =7.11 x107*. \/HV - M x 100%4mg~logg 3)

with my, = my — 2.175¢, ¢ = 1.47Ep_y, and the Eddington
flux H, = 1.109 x 1073 ergecm™2s™' Hz™!' at A.z of our final
model atmosphere. We used Ep_y = 0.0005 +0.0005 (Sect. 2.3),
M =0.555%0035 pro and my = 11.7228 +0.0082 (van Leeuwen

-0.029
2007), and derived a distance of d = 62 +4 pc and a height above
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Fig. 25. Location of G191-B2B in the log T.s—log g plane (the ellipse
indicates the errors of our analysis) compared with evolutionary tracks
for hydrogen-rich white dwarfs (Renedo et al. 2010) labeled with the
respective stellar masses (in Mg).

Table 8. Parameters of G191-B2B as derived by our analysis.

Ty /K 60000 + 2000
log (g/cm/s?) 7.60 = 0.05
Mass Number

Element [X]

fraction
H 9.99 x 107! 1.0 0.132
He <1.98x 107 <5.0x107° <—4.099
C 7.15%x 107  6.0x1077 -2.520
N 2.08 x 107° 1.5%x107  -2.522
(0] 1.90 x 1073 12x107°  -2.479
Al 1.12x 107 42x107 -0.695
Si 5.01 x 107 1.8x107° —1.123
P 1.54%x10°  50x10® —-0.579
S 5.72 x 107 1.8x107  -1.733
Ti <3.13x 107 <1.1x107 <-0.100
Cr <1.66x107% <5.1x1077 <-0.100
Mn <1.08x10% <3.2x 1077 <-0.100
Fe 498x 10  9.0x10° -0414
Co <4.92x107 <1.2x1077 <-0.100
Ni 349x 107 6.0x107 -0.310
Zn 1.30x 1075 2.0x 1077 0.873
Ge 3.24x10°%  45x1078 1.135
Sn 3.53x 1077 3.0x107° 1.569
Ep vy 0.0005 + 0.0005
log (Ny,/cm?)  18.34%09%
log (Np, / cm?) 13.54+09
d/pc 62+4
M | Mg 0.555%0033
R/Rs 0.0195+0.9004
log (L / Lo) 0.63f8:§1

the Galactic plane of z = 8 + 1pc. This is in agreement with
the HIPPARCOS!? parallax measurement (van Leeuwen 2007,
HIP23692) of d = 59.88_?3:82 pc and the XHIP'® value of
d = 57.96 £ 10.31 pc (Anderson & Francis 2012). The spec-
troscopic distance of d = 55.84 +0.86 pc determined by Holberg
et al. (2008) is slightly smaller, this error estimate, however, ap-

pears to be too optimistic.

7 http://www.rssd.esa.int/index.php?project=HIPPARCOS
18 Extended HIPPARCOS compilation
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Fig.26. Comparison of our final TMAP model (blue, thick) with a
TMAW model (red, thin). Top: astrophysical fluxes at the stellar sur-
face, middle: ratio TMAP/TMAW flux, bottom: normalized fluxes.

5. TheoSSA: synthetic stellar spectra on demand

At the end, we want to compare our final TMAP model flux with
an SED, that was calculated with the TMAW tool (Sect. 1) and
considers H, He, C, N, and O only. Figure 26 shows that the
TMAP flux is higher everywhere at 1 > 911 A. The reason is
strong metal-line blanketing at 1 < 911 A that causes a flux in-
crease at longer wavelengths. It amounts to about 10% at 1000 A
and to about 5% at 7000 A. The lower panel of Fig. 26 illustrates
that the theoretical line profiles of the H1 Balmer series are al-
most identical in both, TMAP and TMAW models, with the ex-
ception of an increased emission reversal in the line core of Ha
in the TMAP model.

The TheoSSA database contains currently TMAP SEDs of
a dozen standard stars. Some of them are represented by differ-
ent models for comparison, because they were initially calcu-
lated for the calibration (Vernet et al. 2008a,b, 2010) of ESO’s!?
second generation VLT? instrument XSHOOTER?! (Vernet
et al. 2011) while the parameters of Gianninas et al. (2011) and
Giammichele et al. (2012) were published later (Table 9).

19 European Southern Observatory.

20 Very Large Telescope.

2l http://www.eso.org/sci/facilities/paranal/
instruments/xshooter

Table 9. Standard star SEDs (references for T.x and logg are given)
presently available in TheoSSA.

Test logg
Name WD no. Spectral type
(K] [em/s’]
EG274 1620-391 DA2 (+ G5V) 24276 8.01¢
25980 7.965¢
Feige 67 Op+WDsd 75000 5.204
Feige 110 2317-054 sdO 40000 5.00¢
G191-B2B  0501+527 DAO 58 883 7.46"
61193 7.49/
60920 7.55%
60 000 7.559
G93-48 2149+021 DAZ3 18100 7.85"
18170 8.01°
GD 50 0346-011 DA2 40550 9.22
42700 9.20°
GD71 0549+158 DALl 32747 7.68/
32780 7.83
33590 7.93%
GD 108 0958-073 sdB 22908 5.30/
GD 153 12544223 DAL.S 38205 7.89
38686 7.66/
40590 7.93%
HZ2 0410+117 DA3 20600 7.90"
21600 7.98°
HZ 43A 13144293 DAl1+dM3e 51116 7.90F
56 800 7.89%
Sirius B 0642-166 DA2 24 826 8.60
25970 8.57b¢

Notes. WD numbers are from McCook & Sion (1999). @ Assumed;
® Gianninas et al. (2011); © Giammichele et al. (2012); V Bauer &
Husfeld (1995); * Heber et al. (1984a), He mass fraction of 0.107;
) Finley et al. (1997); @ this work; ™ Guseinov et al. (1983);
@ Barstow et al. (2001); ¢ Kilkenny et al. (1988); ®’ Beuermann et al.
(20006).

6. Accuracy of flux calibration with G191-B2B

Our spectral analysis was performed using state-of-the-art
atomic data and model-atmosphere code. The best reproduction
of UV and optical spectra was achieved with chemically homo-
geneous models. In Fig. 27, we compared two models at the edge
of our error ranges in Tt and logg. The deviation in the con-
tinuum flux of two TMAP model SEDs is ~3% in the optical
and ~5% in the FUV. A systematic error is present due to the
uncertainty of the used atomic data, such as oscillator strengths
where it is typically ~15% for a single line. The employment of
many lines of many ions of many atoms in a spectral analysis
minimizes the propagation of these uncertainties into the errors
of the main photospheric properties like 7., log g, and the abun-
dances. An additional systematic error may be present between
individual model-atmosphere packages (e.g. Rauch 2008b) be-
cause of differences in coding, approximations, etc.

The situation for the flux calibration is, however, not that
strongly dependent on the exact T.g and log g values (the latter
is even less important). E.g. in the case of G191-B2B and our
errors (3% in Tex and 0.05dex in logg), a normalization to
a precisely measured brightness will reduce the deviation be-
tween model SED and observation much below 1% in the op-
tical and infrared. The residuals among the three primary stars
G191-B2B, GD 71, and GD 153 are generally sub percent at the
longer wavelengths (Bohlin 2007). The remaining deviation in
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Fig. 27. Flux ratio of two TMAP models at the edge of the Tz and
log g error ranges and our final model.
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Fig. 28. Determined T and log g values in the last 34 years. Blue tri-
angles denote analyses with LTE models, red squares those with NLTE
models (Table 2). The result of Koester et al. (1979, log g=5.95) is out-
side the top and bottom panels.

the FUV wavelength range is presently less than 2%. Further
improvement is essentially dependent on the reliability of the
atomic data (Sect. 7).

7. Conclusions

The TheoSSA service is designed to provide theoretical stel-
lar SEDs of any kind in VO-compliant form. Its efficiency is
strongly increasing if more different model-atmosphere groups
provide their SEDs with a proper description in their respec-
tive meta data. The establishment of a database of spectropho-
tometric standard stars is an opportunity to use the same
model SEDs for astrophysical flux calibration. Many model-
atmosphere groups have their own best models for some of
these stars, for which a common base for comparison arises.
Differences in the algorithms for considered physics, assump-
tions, and approximations in different model-atmosphere codes,
lead to systematic deviations in general.

Figure 28 shows the temporal development of the 7.t and
logg determinations of G191-B2B. While both values had a

A106, page 14 of 27

large scatter in the 1990s (error ranges are not shown for clar-
ity), the three most recent analyses, that are all based on so-
phisticated NLTE model-atmosphere techniques, show a good
agreement within relatively narrow error ranges of about 3% in
T and 0.05 dex (=#12%) in log g. Ironically, these latest results
agree quite well with the very first line-profile analysis presented
by Holberg et al. (1986) performed with a Ly « line-profile fit
with a simple, pure-H LTE model atmosphere. The TheoSSA
database may help to get closer to the intended goal of 1% accu-
racy in absolute flux calibration.

We presented here our spectral analysis of G191-B2B to
demonstrate the current state-of-the-art. We are presently able
to reproduce the observed spectrum from 250 A to the infrared.
The EUV part from 150 A to0 250 A cannot be modeled, neither
by our homogeneous nor by our stratified models. The reason is
unknown.

A similar analysis of the UV spectrum of the calibration star
BD +28°4211 (Tex=82000 + 5000K, logg= 6.2’:83) was just
published by Latour et al. (2013).

Model-atmosphere codes have arrived now at a high level of
sophistication, and we already encounter problems getting re-
liable atomic data to reproduce the high-resolution and high-
S/N spectra that are obtained with presently available instru-
ments. This is a challenge for atomic physicists to be prepared
for upcoming telescopes and instruments.
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THEOSSA request via http://dc.g-vo.org/theossa:
Terr, log g, {Xi}
standard flux table

individual flux table: A interval, resolution

Y

check of GAVO database: w GAVO database

are requested parameters matched

Y

Terr, log g, {Xi}
within tolerance limits?

ARI

meta data

i VO services
yes: no:
offer existing model calculate new TMAW model v
| ( IAAT \

A
models

atomic data
accept request frequency grids

exact T, log g, {Xi} flux tables
retrieve flux tables 5-2000 A
and on-the-fly products | 2000 - 3000 A

from GAVO database ) 3000 - 55000 A
—_

—

Fig. 1. Flow diagram of TheoSSA. The VO user sends an SED request to the GAVO database by entering the photospheric parameters. If a suitable
model is available within the desired tolerance limits, it is offered as a results table. In case that the parameters are not exactly matched, the VO user
may decide to calculate a model with the exact parameters. TMAW will start a model-atmosphere calculation at our institute’s (IAAT) PC cluster
then. Extended model grids make use of computer resources that are provided by AstroGrid-D. As soon as the model is converged, the VO user
can retrieve the SED table from the GAVO database.
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Fig. 6. Temperature and density structure and ionizations fractions of our model with 7s =60 000 K and log g=7.60. IG denotes a generic model
atom consisting of Ca, Sc, Ti, V, Cr, Mn, and Co.
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Fig. 11. Same as Fig. 10 for Fe 1v— VI lines (from left to right panels, marked blue in the top panels) only.
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Fig. 12. Same as Fig. 10 for NiIv— VI lines (from left to right panels, marked green in the fop panels) only.
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Fig. 23. Comparison of our model spectra (all calculated with log g=7.60) with the STIS observation. Top: final homogeneous model (TMAP).
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Table 2. T4 and log g from previous analyses of G191-B2B.

Teqt logg
Reference Method
[K] [cm/s*]
61900 7.5¢ Shipman (1979) LTE, pure H, optical colors
56788 + 3336 5.95 +£0.04 Koester et al. (1979) LTE, pure H, optical colors,”
62250 + 3520 7.55 +£0.35 Holberg et al. (1986) LTE, pure H, HI L  line
59250 + 2000 7.50 £ 0.10 Kidder (1990) LTE, pure H, HI Hy and Hé lines
cited by Holberg et al. (1991)
61 000+6000 8.00° Green et al. (1990) LTE, H+He, extreme ultraviolet (EUV) continuum
61170 j%)?g 8.00¢ Finley et al. (1990) LTE, H+He, ultraviolet (UV) continuum
62250 + 1000 8.00¢ Finley et al. (1990) LTE, H+He, HI L & line
62250 7.55 Vennes et al. (1991) NLTE, H+HeCNSi, UV spectrum
53500 + 500 Koester & Finley (1992) LTE, H+He¢, UV continuum
60500 + 900 7.50 £ 0.05 Vidal-Madjar et al. (1994) LTE, H+He, H1 Balmer lines
57900 + 1500 7.50¢ Dupuis et al. (1995) NLTE, pure H, EUV continuum?
54 000 + 800 7.50¢ Dupuis et al. (1995) NLTE, H+CNOFe, EUV continuum?
60500 + 1000 7.5 Lanz et al. (1996) LTE, H+HeC, H1 Balmer lines
56 000 = 1000 7.5 Lanz et al. (1996) NLTE, H+HeC, H1 Balmer lines
55200 + 1000 7.5 Lanz et al. (1996) NLTE, H+HeCFe, H1 Balmer lines
64 000 + 1000 7.64 + 0.06 Vennes et al. (1996) LTE, pure H, HI Lyman lines
57900 + 1500 7.5 Vennes et al. (1996) LTE, pure H, extreme UV (EUV) continuum?
64100 + 700 7.69 + 0.04 Vennes et al. (1996) LTE, H+CNOFe, H1 Balmer lines
52600 + 800 7.53 +£0.07 Vennes et al. (1996) LTE, H+CNOFe, HT Lyman lines
54000 + 800 7.5 Vennes et al. (1996) LTE, H+CNOFe, EUV continuum?
61193 + 241 7.49 +0.01 Finley et al. (1997) LTE, H-Ni, H1 Balmer lines
59 160*270 7.36* 008 Barstow et al. (1998) NLTE, pure H, H1 Balmer lines
59 190* 5550 7.36* 007 Barstow et al. (1998) NLTE, H+He, H1 Balmer lines
59060 *1430 7.36* 008 Barstow et al. (1998) NLTE, H+He + heavy-metal poor, HT Balmer lines
53840 f‘]‘gg 7.38f8;8; Barstow et al. (1998) NLTE, H+He + heavy-metal rich, H1 Balmer lines
52920 + 350 7.36 + 0.03 Barstow et al. (1998) NLTE, H+He + heavy-metal rich, HI Lyman lines®
56 000 7.6 Wolff et al. (1998) LTE + NLTE, H+CNOSiFeNi, EUV continuum?
56 000 7.6 Dreizler & Wolft (1999) NLTE, H+CNOSiFeNi, diffusion model, EUV to optical
54 600 + 200 7.60 +0.02 Barstow et al. (2001) NLTE, H+HeCNOSiFeNi, H1 Balmer lines
52930 + 3600 7.16 £0.2 Barstow et al. (2001) NLTE, H+HeCNOSiFeNi, HI Lyman lines”
53180 + 530 7.43 +0.04 Barstow et al. (2001) NLTE, H+HeCNOSiFeNi, H1 Lyman lines®
56 000 7.59 Schuh et al. (2002) NLTE, H+HeCNOSiFeNi, diffusion model, EUV continuum?
54 000 7.5 Holberg et al. (2003) NLTE, metal lines
58865 + 706 7.57 £0.038  Lajoie & Bergeron (2007) NLTE?Y, pure H, HI Balmer lines
60680 + 15000 7.57" Lajoie & Bergeron (2007) NLTE?, pure H, HI Lyman lines’
57414 + 4700 7.57" Lajoie & Bergeron (2007) NLTE?, pure H, V-normalization method
61980 + 514 7.56 £ 0.04 Allende Prieto et al. (2009) NLTE, H’/, H1 Balmer lines
60920 + 993 7.55 £ 0.05 Gianninas et al. (2011) NLTE, H+CNO, H1 Balmer lines

Notes. @ Assumed log g value. ) The authors note that the results are extrapolated from their model grid. ) Stratified model, hydrogen-layer mass
between 6 X 107" and 8 x 10™"> M. ® Extreme Ultraviolet Explorer (EUVE, http://heasarc.gsfc.nasa.gov/docs/euve/euve.html)
observations. © Orbiting and Retrievable Far and Extreme Ultraviolet Spectrometer (ORFEUS, http://www.uni-tuebingen.de/en/4221)
and FUSE observations. 7 Hopkins Ultraviolet Telescope (HUT, http://praxis.pha.jhu.edu/) observations. ¥ International Ultraviolet
Explorer (IUE) observations. ' Adopted from their optical solution. ” Models described in Liebert et al. (2005). ¢ The authors note that T.g
may be overestimated by ~6000 K because their pure-H models are inappropriate due to the photospheric metal content. ® New H1 Stark line-
broadening tables from Tremblay & Bergeron (2009).
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Table 3. Abundances of photospheric trace elements in G191-B2B
from previous analyses.

Element Log mass fraction

He —-42+0.1° -4.41
4.4 +0.3

C -4.6+0.3¢ -5.6
4.6 0.3

N -4.3+0.4¢ -5.9
-5.6+0.3

(¢} —-4.8+0.3° -4.61
-4.8+0.3

Mg <-5.6'

Al =5.1

Si -5.1+0.4¢ -5.0'
-5.1+0.5¢
-5.0+0.3

P -6.2+0.2¢

S -52+0.5¢

cl <-7.0°

Cr <—6.3

Mn <—6.3

Fe -3.8+0.3¢ -3.8
-34+04/
-33+0.3

Co <—6.2

Ni —4.2+0.57 -4.41
-42+04/
-3.9+0.3

Ge —-6.1 +0.2"

Sn —-6.9+0.2"

Notes. He abundance assumed, no abundance uncertainties given.
@ Cruddace et al. (2002); ® Lanz et al. (1996); ©© Vennes et al. (1996);
@ Vidal-Madjar et al. (1994);  Chayer et al. (1996); 7 Werner &
Dreizler (1994); @ Holberg et al. (1994); ® Vennes et al. (2005);
@ Holberg et al. (2003).
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Table 4. Statistics of our model atoms.

Ion NLTE levels LTElevels Lines Sample lines

Hi 14 2 91
I 1 - -
He1 29 74 69
I 16 16 120
11 1 - -
Cu 1 45 0
it 44 23 190
v 54 4 295
A% 1 0 0
N 11 1 246 0
11 34 32 129
v 90 4 546
\% 54 8 297
VI 1 0 0
on 1 46 0
11 72 0 322
v 38 56 173
\% 76 50 472
VI 54 8 291
VII 1 0 0
Al 1 4 0
I 7 29 10
v 6 183 3
\Y 6 223 4
A% 1 0 0
Si 17 17 28
v 16 7 44
\% 1 0 0
P 3 7 0
v 21 30 9
\% 18 7 12
VI 1 0 0
S 11 1 230 0
v 17 83 32
\Y 39 71 107
A% 25 12 48
Vi 1 0 0
Fe m1 7 0 25 537 689
v 7 0 25 3102371
\Y 7 0 25 3266247
A% 7 0 33 991935
vIiI 7 0 39 200455
VIII 1 0 0 0
Ni 111 7 0 22 1033920
v 7 0 25 2512561
\% 7 0 27 2766 664
VI 7 0 27 7408 657
VII 7 0 33 4195381
VIII 1 0 0 0
IG 11 1 0 0 0
v 7 0 25 1579918
\Y 7 0 23 2230921
A% 7 0 25 1455521
vIiI 7 0 24 1129512
VIII 1 0 0 0

Notes. IG denotes a generic model atom consisting of Ca, Sc, Ti, V, Cr, Mn, and Co. “Sample lines” are individual Kurucz lines that are sampled
to superlines for Ca—Ni (Rauch & Deetjen 2003).
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Ion NLTE levels LTE levels Lines Sample lines
Zn 1l 1 5 0
I 2 10 0
1A% 31 0 87
\ 5 15 0
VI 1 0 0
Ge III 1 15 0
v 8 1 8
\Y 85 0 878
VI 11 25 0
VI 1 0 0
Sn 11 3 18 2
v 6 4 1
\ 5 4 0
A% 6 0 0
VII 1 0
Total 70 1038 1614 4646 32411752
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Fig. A.2. Comparison of a section of the STIS observation with our final model. Stellar and interstellar lines are identified. “is”” denotes interstellar
origin, “unid.” denotes unidentified lines.
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